If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-2y-112=0
a = 1; b = -2; c = -112;
Δ = b2-4ac
Δ = -22-4·1·(-112)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{113}}{2*1}=\frac{2-2\sqrt{113}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{113}}{2*1}=\frac{2+2\sqrt{113}}{2} $
| (X-4)(x-8)-5=0 | | H=2f,f= | | H=2ff= | | 6(10^y+4)=28−3(1−10^y) | | (6s+2)^2-16=0 | | 2=5{5z-2}-9{3z-2} | | (6s+2)^2-160=0 | | 6(x+4)+6x=24 | | -4x+8(4-x)=42 | | 2x+3(5-3x)=(5-3) | | (b-1)^2=12 | | 8•n=-16 | | 5+3(6x-2)=13 | | 1/2x+11=53 | | 3x+3(x-3)=33 | | 4x+40=4x+31 | | 2x^2+x-4.9=0 | | 1.2q-6.4q+1.3=-24.7 | | 3-b+3b=1 | | 30+(7+x)+10=40 | | 2p+17p=38 | | 42^(z-3)=7 | | 5x+1=3x–3 | | 51-17+37=p | | 2x(3x-4)-14=0 | | b/b-5+8=5/b-5 | | -.05x^2+35=20 | | 81/9•24=y | | 81/9•24=x | | 1/3y+2=2/15y | | 49x=176 | | 4x+12=3(X-1) |